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The ability of primates to effortlessly recognize faces has been attributed to the existence of specialized face areas. One such

area, the macaque middle face patch, consists almost entirely of cells that are selective for faces, but the principles by which

these cells analyze faces are unknown. We found that middle face patch neurons detect and differentiate faces using a strategy

that is both part based and holistic. Cells detected distinct constellations of face parts. Furthermore, cells were tuned to the

geometry of facial features. Tuning was most often ramp-shaped, with a one-to-one mapping of feature magnitude to firing rate.

Tuning amplitude depended on the presence of a whole, upright face and features were interpreted according to their position in a

whole, upright face. Thus, cells in the middle face patch encode axes of a face space specialized for whole, upright faces.

Viewing the world, we are confronted by myriad visual objects. How
does the brain extract these objects from the incoming bits and pieces
of information? The representation of an object (as opposed to a spot,
edge or smear of color) must involve a mechanism for representing its
gestalt. What is the neural mechanism by which curves and spots are
assembled into coherent objects? And how does the brain preserve fine
distinctions between individual objects throughout this process?

We have a good understanding of how edges, a form common to all
objects, are coded by cells in area V1 (ref. 1), but the mechanisms by
which the brain analyzes shapes at the next level are less understood.
One major experimental difficulty is that there are so many different
forms and no clear approach to choosing one set of forms over another
for testing each cell. It is clear, however, that any study of object
recognition must employ a restricted set of all possible forms. The
challenge, then, is to find a way to constrain the stimulus space by
incorporating prior knowledge about the cells’ stimulus preferences.

Functional magnetic resonance imaging (fMRI) provides a solution
to this challenge2. Using fMRI in macaque monkeys, we found a
cortical area in the temporal lobe that is activated much more by
faces than by nonface objects3. Subsequent single-unit recordings
showed that this area, the middle face patch, consists almost entirely
of face-selective cells4. Targeting single-unit recordings to this area
provides a powerful strategy for dissecting the mechanisms of high-
level form coding in a homogeneous population of cells that are
selective for a single type of complex form.

The space of faces still contains an infinite variety of particular forms
(as it must for face perception to be useful). An effective strategy to
further reduce the stimulus space is to represent faces as cartoons5. This
approach has several justifications. First, the nameable features making
up a cartoon (eyes, nose, etc.) correspond to the brightness disconti-
nuities of real faces6, and thus approximate the representation relayed
by early visual areas. Second, a cartoon face is clearly perceived as a face,

and cartoons therefore effectively convey the overall gestalt of a face.
Thus, cartoons constitute appropriate stimuli for studying the neural
mechanisms of face detection. Third, cartoons convey a wealth of
information about individual identity and expression through both the
shape of individual features (for example, mouth curvature), and the
configuration of features (for example, inter-eye distance). Therefore,
cartoons constitute appropriate stimuli for studying the neural
mechanisms of face differentiation. Finally, cartoon shapes can be
completely specified by a much smaller set of parameters than would be
required to specify individual pixel values of images of real faces, thus
simplifying analysis. For all these reasons, cartoons provide a powerful
and effective way of simplifying the space of faces.

We asked how cells in the middle face patch detect and differentiate
faces. We used fMRI to localize the middle face patch and then targeted
it for single-unit recording. We first measured responses of cells to
photographs of faces and other objects; the results of this test confirmed
the selectivity of the middle face patch for faces. We next measured the
responses of these cells to pictures of both real and cartoon faces
and found that responses to cartoon faces were comparable to those of
real faces. Armed with this knowledge, we then probed cells with
systematically varying cartoon faces to address three fundamental
questions: what is the mechanism for face detection, what is the
mechanism for face differentiation and what role, if any, does facial
gestalt have in face differentiation.

RESULTS

Selectivity for real and cartoon faces

We determined the locations of the middle face patches in the temporal
lobes of three macaque monkeys with fMRI (Fig. 1a) and then targeted
one middle face patch in each monkey for electrophysiological record-
ings. For every cell that we recorded (286 total), we first determined the
face selectivity of the cell by measuring its response to images of 16
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frontal faces, 64 nonface objects and 16 scrambled patterns (Fig. 1b;
examples of stimuli are shown in Supplementary Fig. 1). Across the
population, 94% of the cells were face selective (Fig. 1b).

We then compared the responses of middle face patch neurons to
cartoon faces and to real faces. We recorded responses of 66 cells to
images of 16 real faces, 16 nonface objects, 16 cartoon faces and 16
isolated parts of cartoon faces. The cartoon faces were constructed from
seven elementary parts (hair, face outline, eyes, irises, eyebrows, mouth
and nose) whose shape and position were matched to those in the real
faces (examples are shown in Supplementary Fig. 1). Across the
population, the mean response magnitude to cartoon faces was 83%
of the response to real faces, whereas the mean response to nonface
objects was 17% and the response to cartoon parts was 24% of the
response to real faces (Fig. 1c). Response ranges to real and cartoon
stimuli were largely overlapping; all but one cell responded more to at
least one cartoon face than to one of the real faces, and a cartoon face
elicited the best or second best response in 45% of the cells. Further-
more, the selectivity of cells for real and cartoon faces was correlated
(r ¼ 0.62, P o 0.001) and response time courses were similar (mean
correlation across cells, r ¼ 0.90, P o0.001; Fig. 1c). Thus, although
cartoon faces lack many of the details found in real faces, such as
pigmentation, texture and three-dimensional structure, they constitute
effective substitutes to middle face patch neurons. Therefore it is
appropriate to use cartoon stimuli to probe the detailed mechanisms
of face representation by these neurons (in addition, Supplementary
Fig. 1 provides psychophysical data that our cartoon stimuli success-
fully captured essential aspects of face identity).

Face detection: selectivity for face parts

Cartoon faces can easily be decomposed into parts (without introduc-
ing additional edges, as would be the case with cutting up images of real
faces) and therefore are ideally suited for studying the mechanisms of
face detection. We presented a set of all 128 (27) possible decomposi-
tions of a seven-part cartoon face to 33 middle face patch neurons

(Fig. 2a; stimuli are shown in Supplementary
Fig. 1). ANOVA revealed that, across the
population, cells were directly influenced

by at least one, and at most four, face parts (Fig. 2b). This first order
effect explained half of the response variance (52%) on average.
In addition, a majority of cells (78%) showed significant pair-wise
interactions between their part responses (P o 0.005; Fig. 2b); these
second order effects explained an additional 18% of the variance. This
dependence of responses on multiple parts and part interactions shows
that middle face patch neurons are not simple feature detectors.
However, because 70% of the response variance was explainable by
first and second order effects alone, middle face patch cells are not
highly nonlinear holistic cells either.

Notably, middle face patch neurons did not have a single best
stimulus that uniquely elicited the maximum firing rate. In particular,
the response magnitude to whole cartoon faces was only 42% of that
of the summed response to the seven face parts on average (Fig. 2c; see
ref. 8). As a consequence, the same cell often fired at its maximum rate
to both the whole face and to a variety of partial faces (Fig. 2d), a
property that is useful for face detection.

Face differentiation: encoding of facial features

In the previous experiment, we determined selectivity for the presence
of various face parts. We next investigated selectivity for the geometric
shape of various face parts (for example, nose width). For this purpose,
we used the same cartoon face stimulus described above (comprising
seven parts), but now specified the geometry of parts and part relations
by 19 different parameters, each with 11 values (six of these parameters
are illustrated in Fig. 3a and all 19 parameters are listed in Fig. 3b and
are defined in the Online Methods). The stimulus was presented in
rapid serial visual presentation mode, with each parameter being
updated randomly and independently every 117 ms (Supplementary
Video 1). This approach allowed us to probe in detail the mechanisms
by which cells distinguish different faces.

We first asked whether cells in the middle face patch are tuned to
simple facial features. For each stimulus dimension, we computed a
time-resolved tuning curve (see Online Methods and Supplementary
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Figure 1 Selectivity of the middle face patch for

real and cartoon faces. (a) fMRI-defined middle

face patches (P o 10�4) shown on coronal slices

(millimeters anterior to inter-aural line indicated

in bottom left) for the three monkeys used in this

study (monkeys A, T and L from top to bottom),

with recording sites marked by electrode icons.

(b) Top, response profiles of all 286 cells tested
with 96 pictures of faces, bodies, fruits, gadgets,

hands and scrambled patterns (16 images per

category, one example per category is shown) and

average normalized population responses (bar

graph). Bottom, distribution of face-selectivity

indices. 268 of 286 neurons (94%) were face

selective (that is, face-selectivity index larger than
1
3 or smaller than � 1

3, dotted lines). Out of the

subset of 241 neurons that met the stringent

criterion for visual responsiveness (see Online

Methods), 230 (95%) were face selective. (c) Top,

face and cartoon selectivity of 66 cells tested with

64 images of faces, gadgets, cartoons and cartoon

face parts (data are presented as in b). Bottom,

time course of population response to four

stimulus categories: faces, gadgets, cartoons and

cartoon parts. Stimuli were presented for 200 ms

and separated by 200-ms interstimulus intervals.
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Fig. 2) that captures how feature values (�5 to +5) influence the firing
rate as a function of poststimulus time (0–400 ms). Comparing each
time-resolved tuning curve to a distribution of shuffle predictors allowed
us to determine whether a given feature dimension exerted a significant
influence on the spiking of a cell (P o 0.001, see Online Methods).
Tuning started as early as 75 ms after feature change. The time window
over which tuning occurred overlapped with the time window of face
selectivity, although the latter (Fig. 1d) was determined with a very
different stimulus presentation regime (Supplementary Fig. 3).

Individual cells were modulated by different subsets of features (all
19 tuning curves for three example cells are shown in Fig. 3b). Across
the population of 272 cells recorded in this experiment, 90% showed
tuning to one or more stimulus dimensions (Fig. 3c). Individual cells
were tuned to between one and eight stimulus dimensions (on average,
2.8 dimensions for cells that showed any tuning at all). Thus, each cell
was specialized for a small number of feature dimensions. We did not
find cells tuned to all aspects of a face.

Some features were represented more frequently in the population
than others (Fig. 3d). The most popular parameter was face aspect ratio,
to which more than half the cells (59%) were tuned, followed by iris size
(46%), height of feature assembly (39%), inter-eye distance (31%) and
face direction (27%). Thus, the most important feature categories were
facial layout geometry and eye geometry; the feature categories mouth
and nose were represented by five cells only. This pattern of results was
robust and observed for different fixation conditions (Supplementary
Text 1 and Supplementary Fig. 4). The two most prominent dimen-
sions were associated with the largest and the second smallest physical
differences between feature values (face aspect ratio and iris size,

respectively). Thus, the incidence of tuning was not directly related to
the magnitude of physical change associated with each dimension, but
the two were positively correlated overall (Supplementary Text 2 and
Supplementary Fig. 5). The low incidence of tuning for entire feature
categories (mouth and nose) leads to a reduction in the dimensionality
of the face space coded by the middle face patch.

Face differentiation: shape of feature tuning

In our example tuning curves (Fig. 3b), seven out of ten of the
significantly modulated tuning curves were strictly ramp shaped,
with a maximal response at one extreme of the feature range and a
minimal response at the opposite extreme. Such ramp-shaped tuning
dominated across the population as well. We sorted all of the sig-
nificantly modulated tuning curves by the feature value that elicited
the maximal response (Fig. 4a). Most tuning curves (62%) peaked
at an extreme feature value. The distribution of maximal response
values was so highly skewed to the extremes that tuning to the
most extreme values was sixfold more frequent than tuning to the
physically similar second-most extreme values. These extreme values
extended to or even transgressed the limits of realistic face space. For
example, inter-eye distances ranged from almost cyclopean to abutting
the edges of the face, and the most extreme face aspect ratios were
outside those of any living primate. Preference for ramp-shaped tuning
was found in all feature dimensions (Fig. 4b). For most feature
dimensions, both ends of the feature range were well represented,
except for eyebrow slant and iris size; tuning to the popular parameter
iris size was biased to the maximal iris size, with 33% of all recorded
middle face patch neurons responding maximally to the largest irises.
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Figure 2 Selectivity for face parts. (a) Stimulus

conditions for the cartoon face decomposition

experiment (left) and responses of four example

cells. All combinations of seven face parts (hair,

outline, irises, eyes, eyebrows, nose and mouth)

were shown, including the whole cartoon face

with all features (top row) and a gray background

without any face features (bottom row). Top right,
responses are shown as a function of time and

stimulus condition. Bottom, average responses

in the presence (white bars) or absence (black

bars) of a given face part. * indicates significant

modulation (P o 0.005). Cell 1 fired significantly

more strongly when irises were present and

when hair was present (P o 0.05). Cell 2 was

influenced by two parts, and cells 3 and 4 by

four cell parts. Cell 4 responded more strongly

when irises were absent than when they were

present. In cell 4, interactions between face

parts were stronger than in the other cells,

giving rise to the less regular appearance of

responses across conditions. (b) Distributions

of the number of face parts (left) and the number

of pair-wise interactions (right) that exerted a

significant influence on cell firing for 32 cells

(P o 0.005). At most 5 of the 21 possible

feature interactions were significant (P o 0.005).
(c) Scatter plot of responses to the whole face

(abscissa) versus the sum of the responses

to the seven parts (ordinate) for all 32 cells.

(d) Responses of an example cell to the full

cartoon stimulus (left), the four face parts that

modulated activity significantly (outline, eyes,

irises enhancing and hair suppressing) and two

combinations of these two parts (P o 0.005).
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Extreme feature values also suppressed activity more than inter-
mediate ones did; 76% of all tuning curves exhibited minima at
extremes, 14 times as many as for other feature values (Fig. 4a).
Because each feature extreme elicited maximal responses in some
cells and minimal ones in others, the population response to a set of
face characteristics was amplified for extreme compared with inter-
mediate feature values (Fig. 4c). Such amplification predicts that

caricatured representations should be distinguished more easily than
average faces, near the center of face space7,8.

The bias for response minima and maxima at extreme feature values
was characteristic not only of the population of cells, but also of
individual cells’ tuning curves. Two thirds (67%) of tuning curves with
a maximum at one extreme showed the minimum at the opposite
extreme (Fig. 4d). These tuning curves were, on average, almost linear
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in shape (Fig. 4d), thereby establishing a one-to-one mapping between
the entire range of feature values and firing rate. Figuratively speaking,
these cells measure feature dimensions.

Because response minima only rarely occurred near the midpoint of
the cartoon face space, adaptation to the average face cannot account
for the shape of these tuning curves. This is in contrast with the case of
face-responsive (not necessarily face selective) cells anterior to the
middle face patch, which have been reported to respond minimally (or
maximally) to the average face9. We also tested for possible short-term
adaptation effects or coding of feature changes rather than coding of
features per se. It would be possible that a response is maximal to a
feature extreme because extremes are preceded, on average, by the
largest physical changes and not because extremes are special shapes.

We performed a two-way ANOVA to test for interactions between
responses to successive feature values of the same dimension. Of the
514 dimensions tested, only seven showed a significant interaction
between subsequent feature values (ANOVA, P o 0.05). Thus, we do
not find evidence for adaptation or change magnitude being involved
in generating feature tuning.

Face differentiation: frequency of feature combinations

The typical middle face patch neuron is tuned to approximately three
feature dimensions. Such conjunctive feature representation can aid in
solving the binding problem10, as cells tuned to overlapping feature
constellations can uniquely represent a particular face. To achieve
this computational goal, the population of neurons should create all
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possible conjunctions of feature tuning. Because cells were tuned to 14
of the 19 stimulus features, there were C2

14 ¼ 91 feature combinations
possible. We found only one feature combination that occurred more
often than would be expected by chance combinations (8 times,
compared with a P ¼ 0.01 significance threshold of 7.7, details in
Online Methods). Thus the population approaches maximal coverage
of feature combinations even across different face parts. Furthermore,
even neighboring cells often encoded different feature combinations
(Supplementary Text 3 and Supplementary Fig. 6).

We next asked how middle face patch neurons integrate different
features. If feature integration is to preserve faithful measure-
ment of individual features, then tuning to feature combinations
should be separable into tuning to individual features11. Joint tuning

functions computed by multiplying single-feature tuning curves
were almost identical to the actual joint tuning functions (corre-
lation coefficients between 0.90 and 0.97; Fig. 5a). In our sample
of 771 pairs of significantly modulated marginal single-dimension
tuning curves, the average correlation coefficient between the actual
joint tuning functions and multiplicative predictors was 0.89 (an
alternative analysis of separability is provided in Supplementary
Text 4 and Supplementary Fig. 7). This result does not imply,
however, that feature combination was precisely multiplicative:
prediction of joint tuning functions by additive predictors was
almost as good as that by multiplicative predictors (average correla-
tion coefficient of 0.88, which was significantly lower (P o 0.01)
than multiplicative predictors, Wilcoxon rank sum test; Fig. 5b).
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Figure 6 Integration of features and effects of

face context. (a) Time-resolved tuning curves from

five cells (left to right) showing the effect of three

different contexts (top to bottom) on face feature

tuning. The top row shows the responses to

varying a single face feature in the full-dimension

tuning experiment, in which all 19 features were

simultaneously varied (19D). The middle row

shows the responses to varying the same feature

with the other 18 features fixed at their mean

value. The bottom row shows responses to varying

the same feature with all other features removed.

Cells 1 and 4 lost tuning in the absence of the
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stable tuning across conditions, cells 1 and 5

showed strengthened tuning when other features

were static, and cells 2, 3 and 4 showed similar

tuning strengths when other features were static

as when they changed. (b) Area-normalized tuning

curves in 35 cells in which significant tuning was

observed in all three experiments (P o 0.001).

Tuning curves were sorted by the position of

maximal response in the full tuning experiment

(left). Tuning curves were similar for single-

dimension tuning with the face present and

less so than when the rest of the face was absent.

(c) Correlations between tuning curves in 35 cells in the three experiments. Positively correlated tuning curves are shown in dark red, negatively correlated

ones in black and the average correlation coefficients across all curves are shown in the upper left of each curve.
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Separable joint tuning allows for faithful readout of individual
feature values and confirms the importance of feature representa-
tion in the middle face patch.

Mechanisms for holistic processing: facial context

Face recognition has been characterized as holistic in that the face is
processed as whole unit without breakdown into parts or part
relations12,13. What role, if any, does the facial whole have in the
representation of face identity in the middle face patch? We addressed
this question in two experiments that are similar to two classical
psychophysical tests of holistic processing. In the first, we tested how
coding of individual facial features depended on the presence or
absence of the rest of the face. This experiment was motivated by the
finding that humans recognize parts of faces best when they are
embedded in a whole face13. In the second experiment, we tested the
effect of face inversion on tuning. This was motivated by the fact that
humans recognize a facial feature embedded in an upright face better
than the same feature embedded in an inverted face14.

For the first experiment, we measured cartoon tuning in 49 neurons
under three different contexts. In context 1 (the original tuning
experiment), all 19 dimensions were simultaneously varied and a single
dimension showing significant tuning was identified. In context 2, this
one feature dimension was then varied while all others were kept
constant (at their mean value). In context 3, the same feature dimen-
sion was varied, but all nonvarying face parts were removed (tuning of
five example cells measured under these three contexts is shown in
Fig. 6a; Supplementary Videos 2–4). The shape of the tuning curves

determined in contexts 1 and 2 were similar (r ¼ 0.93, P oo0.001).
In the absence of the rest of the face (context 3), 14 cells (29%) lost
any significant tuning. The tuning curves of the remaining 35 cells that
kept their tuning were similar in shape across all three contexts (mean
r¼ 0.93, 0.66 and 0.66 between contexts 1 and 2, 2 and 3, and 1 and 3,
respectively, Poo0.001; Fig. 6b,c). The gain of tuning curves, however,
was bigger when the whole face was present (average gain ratio of 2.2
for context 2 versus 3; Fig. 6c). In addition, firing rates were higher
when the whole face was shown (14.7 Hz in context 2 versus 9.3 Hz
in context 3). These results indicate that the overall gestalt of a face
exerts an influence on tuning to individual feature dimensions by
gain modulation; when the whole face is present, gain increases and
tuning becomes more robust, whereas the shape of the tuning curve
remains constant. A further prediction of a gain modulation model
is the separability of joint tuning functions (for which we present
evidence above).

Mechanisms for holistic processing: face inversion

What brings about this gain modulation? Is it the particular gestalt of a
face or simply the presence of other features in close proximity? Face
inversion offers a unique opportunity to address this question, as
upright and inverted stimuli are similar at the feature level, but
substantially different in their overall gestalt14–16. Our cartoon stimuli
are especially well suited for studying inversion effects because face
inversion does not physically alter facial layout, eye- and eyebrow-
related features, but merely flips the order of feature values.
For example, raised eyebrows turn into lowered eyebrows and vice
versa. Nose, hair and mouth, on the other hand, are physically
changed by inversion.

We tested 48 neurons to rapid serial visual presentation stimulus
sequences of upright and inverted cartoon stimuli. We found a 25%
reduction in the incidence of tuning with inversion (131 significantly
modulated tuning curves for upright faces and 98 for inverted faces),
which affected all important feature dimensions (Fig. 7a). However,
there were two notable exceptions to the general reduction; tuning to
eyebrow parameters was not just reduced, but was lost entirely with
inversion; and substantial tuning to mouth related parameters emerged
de novo (both significant at P ¼ 0.01 using bootstrapping controls).
Because mouth and eyebrow features remained physically identical on
inversion, it must have been the change of their placement inside the
face with inversion that caused loss of tuning to the former and
emergence of tuning to the latter. If middle face patch cells match
the incoming stimulus against an upright face template, this would
parsimoniously explain the emergence of tuning to mouths (as they
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appear at locations expected for eye- and eyebrow-related features), the
loss of tuning to eyebrows (resulting from mismatch between actual
and expected position) and the general decrease in tuning to the other
features (resulting from partial mismatch with expected position) on
inversion. The template hypothesis makes a further prediction for how
inversion should change the shape of tuning:

When inversion merely flips the order of feature values, the tuning
curve to that feature should flip as well. We examined a neuron tuned
to height of feature assembly (Fig. 7b). This neuron responded
maximally to the feature assembly located near the chin inside an
upright face and to the feature assembly located near the forehead
inside an inverted face. In both cases, this neuron preferred the feature
assembly toward the bottom (in gravitational terms) of the facial
outline. In the population, we found the predicted negative correlation
between the shape of tuning to height of feature assembly for upright
and inverted faces (r ¼ –0.50; Fig. 7c,d), On the other hand, when
inversion leaves both the ordering and physical appearance of a feature
unchanged, tuning curves to the feature should stay unchanged on
inversion. Indeed, we found robust positive correlations between
tuning curve shapes for upright and inverted faces to the popular
features of face aspect ratio, face direction, inter-eye distance and iris
size (Fig. 7d).

DISCUSSION

In this study, we took advantage of the rich, but simple, face code
supplied by cartoon faces to probe strategies for face detection and
differentiation in the middle face patch. By studying this problem in a
small cortical volume, we identified new coding principles that may be
of general importance to the extraction of complex form in infero-
temporal cortex.

Cells in the middle face patch detect a wide range of faces, as
evidenced by their vigorous responses to both real and cartoon faces
compared with objects (Fig. 1c,d). However, different cells accomplish
this by different means. No cell required the presence of a whole face to
respond, indicating that the detection process is not strictly holistic.
Instead, responses to systematically decomposed cartoon faces showed
that different cells were selective for different face parts and interactions
between parts (Fig. 2a,b), and even the same cell can respond
maximally to different combinations of face parts (Fig. 2d). Thus,
there is no single blueprint for detecting the form of a face in the middle
face patch.

The mechanism for distinguishing between individual faces appears
to rely on a division of labor among cells tuned to different subsets of
facial features. This was revealed by dense parametric mapping17;
responses were measured to a cartoon stimulus in which all of the
face parameters were independently varied. Tuning to individual
features was almost universal (found in 90% of cells) and each cell
was tuned, on average, to only three feature dimensions (Fig. 3c),
which were integrated in a separable manner (Fig. 5a). Together, cells in
the middle face patch span a face space18,19 with three salient char-
acteristics. First, the axes of the space, represented by the tuning curves
of individual cells, correspond to basic face features and not to holistic
exemplars. Second, the dimensionality of the space is reduced com-
pared with the physical face space20 (Fig. 3d) and the population
focused on features related to the eye and face layout geometry. Finally,
the location in the space is coded predominantly by the firing rates of
cells with broad, monotonic tuning curves (Fig. 4d). A majority of
tuning curves peaked at one extreme and showed a minimal response at
the opposite extreme, and the dynamic range of tuning often spanned
or slightly exceeded the range of physical plausibility. Monotonic
tuning allows for simple readout21 and may be a general principle for

high-level coding of visual shapes22,23. It may also aid in emphasizing
what makes an individual face unique (that is, separates it from the
standard face)7,24–26, as population response variance is highest to such
‘unusual’ features (Fig. 4c). Finally, the breadth of tuning underscores
the fact that cells in the middle face patch encode axes and not
individual faces. This finding indicates that coding in the middle face
patch is coarse, and is not sparse as it is at higher stages of the
processing hierarchy27, and substantiates theoretical proposals that
coarse population codes are advantageous for representing high-
dimensional stimulus spaces28,29.

Psychophysicists have long proposed that perception of face identity
has a holistic component12,13,30, in which a face is obligatorily processed
as a whole. We found two lines of evidence for holistic processing of
face geometry. First, we found that the presence of a whole, upright face
increased the gain of feature tuning curves by an average factor of
2.2 (Fig. 6c). Our finding that holistic coding uses gain modulation
underscores the idea that gain modulation may be a computational
mechanism of general importance to cortical function31,32, even
beyond coordinate transformations33,34 and for attention35,36. Second,
by comparing responses to upright and inverted cartoon faces, we
found that the identity of individual features is interpreted according
to the heuristics of an upright face template (Fig. 7). These two results
demonstrate specific neural mechanisms by which the presence of an
upright facial gestalt influences feature measurement in single cells. In
our experiments, cartoons were presented rapidly, putting the system
to a test in a feedforward mode37–39 in the sense that no expectations
about the upcoming feature values could be formed. In real-world face
perception, top-down feedback40 is important and may be necessary
for additional effects of holistic processing.

We found a high incidence of tuning to some facial features, mostly
to eyes and facial layout, and a paucity of tuning to others, mostly
mouth and nose-related ones. It seems plausible that such a spatial bias
of tuning preference in the face may be the result of attention or
preferential looking rather than a computational strategy for face
processing, as attention has been shown to augment feature tun-
ing35,36,41. Several results are, however, incompatible with a spatial
attention or preferential looking account of tuning biases. First, these
accounts would predict stronger tuning to isolated face parts as a result
of the absence of other potentially distracting visual stimuli (the
rest of the face). However, we found the opposite (Fig. 6a). Second,
preference for face aspect ratio over both internal features (nose,
mouth, eyes and eye brows) and external ones (hair) can only be
explained by a donut-shaped spotlight of attention and this would
not cause preferential tuning for face direction or height of feature
assembly, two popular parameters defined by the relative positioning of
the internal features to the face layout. Third, the feature tuning
bias occurred independently of slight gaze-direction biases above or
below the fixation spot (Supplementary Text 1); for example, the
preference for eye parameters remained even during fixations
below the fixation spot. This rules out the possibility of a preferential
looking account and renders a spatial attention confound unlikely, as
spatial attention is tied to eye movements. Thus, preferential tuning
for facial layout and eye parameters seems to be influenced little, if at
all, by attention and eye positioning, but instead seems to be the
result of computational mechanisms of shape analysis in the
middle face patch.

For the same reasons, it seems unlikely that preferential representa-
tion of extreme feature values is a byproduct of attentional capture.
Furthermore, the attentional capture account would predict response
maxima for both extremes, that is, U-shaped tuning curves, because
both ends of the shape spectrum are equally extreme shapes in most
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feature dimensions. Instead, we found that tuning curves were ramp
shaped and even more response minima than maxima occurred at
extremes. Similarly, the special status of extreme feature values cannot be
explained by shape changes (whether attention capturing or not) rather
than genuine shape preferences, as significant interactions between
responses to successive feature values were found in less than 2% of all
tuned feature dimensions (P o 0.05).

Our results expand existing conceptions about inferotemporal
organization42–44 in two major ways. First, it has been suggested that
an IT cell can be characterized by its ‘critical feature’, defined as the
simplest stimulus that still elicits a maximal response42. Our results
suggest that such a characterization is incomplete and needs to be
augmented by a description of the cell’s feature tuning and its full
selectivity for parts and part interactions. Cells in the middle face
patch are not only selective for the presence of subsets of face parts
(Fig. 2), but also show tuning to subsets of face features (Fig. 3).
The critical feature for a cell would be a face optimized along all
dimensions to which the cell is tuned. However, knowing this single
best image would not allow one to distinguish between features to
which the cell is tuned, and parts that are simply required to be
present (in whatever shape). Furthermore, the predominance of
broad, ramp-shaped tuning suggests that all levels of response to a
tuned feature, including minimal responses, are important (mini-
mal responses are just as informative about what feature is present
as maximal responses, see ref. 8 for a related idea). This notion, that
all levels of response to a tuned feature are informative, is not
included in the critical feature account of IT. On average, the
response to a full face was less than the sum of the responses to
each part and cells often fired maximally to different combinations
of face parts (Fig. 2d). Therefore, an IT cell, at least in the middle
face patch, is only incompletely characterized by a single critical
feature; instead, it is necessary to describe all of the parts and part
combinations for which the cell is selective.

The second major insight from our findings concerns the func-
tional organization of IT. It has been suggested that cells selective
for visually similar critical features are grouped into columns. Our
results indicate that what cells in the middle face patch have in
common is a strong preference for faces over other objects, but this
preference is a true form selectivity that cannot be captured by
common selectivity to any fixed visual feature. There was a marked
diversity in part selectivity and feature tuning in the middle face
patch, and the tuned features of two neighboring face cells often
shared no visual similarity at all (for example, hair width versus
eyebrow slant). This diversity of feature tuning provides the brain
with a rich vocabulary to describe faces and shows how a high-
dimensional parameter space may be encoded even in a small region
of IT. The macaque temporal lobe contains three face patches
anterior to the middle face patch, and future experiments may
reveal how the vocabulary of the middle face patch is used by the
anterior face patches.

METHODS

Methods and any associated references are available in the online
version of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.
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ONLINE METHODS
All procedures conformed to local and US National Institutes of Health

guidelines, including the US National Institutes of Health Guide for Care

and Use of Laboratory Animals as well as regulations for the welfare of

experimental animals issued by the German federal government.

Animals. Three male rhesus macaques were implanted with ultem headposts,

trained via standard operant conditioning techniques to maintain fixation on a

small spot for a juice reward and then scanned in a 3T Allegra (Siemens)

horizontal bore magnet to identify face-selective regions using MION/Sinerem

contrast agent (further details are provided in refs. 3,4). In all monkeys, a

prominent face-selective region was located B6-mm anterior to the inter-aural

line. This middle face patch was targeted for recordings (details in ref. 4).

Monkey A had a middle face patch located on the lip of the superior temporal

sulcus, monkey T in the fundus and monkey L had two middle face patches,

one on the lip (which we targeted) and one in the fundus.

Single-unit recording and eye-position monitoring. We recorded extracellu-

larly with electropolished tungsten electrodes coated with vinyl lacquer (FHC).

Extracellular signals were amplified, bandpass filtered (500 Hz to 2 kHz) and

fed into a dual-window discriminator and an audio monitor (Grass). Spike

trains were recorded at 1-ms resolution. Only well-isolated single units were

studied. Cells that were visually responsive to the screening stimulus set

(Fig. 1b) by ear were further tested with cartoon stimuli; in addition, some

cells that were unresponsive to the screening stimuli by a formal criterion (see

below) were also tested. Eye position was monitored with an infrared eye

tracking system (ISCAN) at 60 Hz with an angular resolution of 0.251,

calibrated before and after each recording session by having the monkey fixate

dots at the center and four corners of the monitor.

Visual stimuli. The monkey sat in a dark box with its head rigidly fixed and

was given a juice reward for keeping fixation for 3 s in a 2.51 fixation box.

Visual stimuli were presented using custom software (written in Microsoft

Visual C/C++) and presented at a 60-Hz monitor refresh rate and 640 � 480

resolution on a BARCO ICD321 PLUS monitor. The monitor was positioned

53 cm in front of the monkey’s eyes. Pictures subtended a 71 � 71 region of the

visual field and cartoons subtended a 5.41 � 7.61 region on average, with both

being presented at the center of the screen.

Pictures were presented for 200 ms, separated by 200-ms blank intervals in

three experiments. In the first, 96 pictures from six different image categories

(faces, human bodies, produce, technical objects, human hands and scrambled

images) were shown (Supplementary Fig. 1). In the second, images of 16 real

faces, 16 fitted cartoons, 16 technical objects and 16 cartoon face parts were

shown (Supplementary Fig. 1). In the third, all 128 (27) decompositions of a

cartoon stimulus were shown (Supplementary Fig. 1).

In contrast, cartoon stimuli were shown continuously, updated every seven

frames (117 ms). Cartoon faces were defined by 19 parameters, each of which

could take any of 11 values. The face defined by mean parameters (p1 ¼ p2 ¼
y¼ p19 ¼ 0) was specified by measurements taken from a photograph of Tom

Cruise. Face aspect ratio defined the eccentricity of a solid ellipse constituting

the face outline. Face direction defined the horizontal offset of the feature

assembly (that is, eyes, eyebrows, nose and mouth) as a fraction of face width.

Thus, the horizontal position of the feature assembly could range from the left

edge of the face to the right. Height of feature assembly defined the vertical

offset of the feature assembly as a fraction of face height. Hair was modeled as

an inverted U of height, hair length and thickness, and hair width. Inter-eye

distance was defined as the distance between iris centers, normalized by face

width (ranging from almost cyclopean to abutting the edges of the face). Eye

aspect ratio defined the aspect ratio and eye size the size of the ellipse

surrounding the iris. Eye, iris and eyebrow were drawn only when the left

(right) edge of the eye was to the right (left) of the left (right) edge of the

face. Gaze direction defined 3 � 3 pupil positions in the eye as follows:

�4 �3 �2
�1 0 1
2 3 4

1
A

0
@ ,

where matrix position denotes iris position in the eye and matrix value denotes

feature value. Parameter values 0, �5 and +5 all represented a straight gaze

direction. Horizontal and vertical spacing between positions was fixed at 2

pixels. Iris size defined the size of a solid ellipse in the eye (with the same aspect

ratio as the eye) as a fraction of eye size. The eyebrow was modeled as an angled

line segment, with the angle defined by eyebrow slant, width defined by

eyebrow width and height above eyes defined by eyebrow height, with the

latter two being normalized by face width and face height, respectively. The

nose was modeled as an outline of an isosceles triangle, with base width defined

by nose base and altitude by nose altitude. The mouth was modeled as two half

ellipses. In a smiling mouth, one half ellipse was black and the other was a gray

mask, which served to carve out the curve of the upper lip; in a neutral/

frowning mouth, both half ellipses were black and joined to form a convex

mouth shape. The width of the mouth, expression of the mouth (smiling to

frowning) and height of the mouth (open to closed) were defined by mouth

size, mouth top and mouth bottom, respectively. The distance of the mouth

below the nose was defined by the mouth-nose distance (this parameter only

affected the vertical placement of the mouth; nose position was unaffected).

Picture data analysis. For each cell, we analyzed the poststimulus time

histograms over 400 ms for all images shown (96 in first experiment, 64 in

second and 128 in the third). Poststimulus time histograms were smoothed

with a Gaussian kernel in time with st ¼ 15 ms. For experiments 1 and 2, we

collapsed responses in each category to compute the cross-category response

variance for each time bin. This variance had to be threefold higher than that of

spontaneous activity (measured between st and 80 ms after stimulus onset) for

a cell to be classed as being visually responsive. The visual response period was

then defined from the first to last point in time that exceeded the variance

threshold. For cells that did not meet this strict criterion for visual responsive-

ness, a default response period was defined to last from 120 ms to 319 ms.

Firing rates were computed as averages over this interval. In the case of the first

experiment, the response magnitudes were determined for faces and objects

relative to the baseline firing rate and normalized to the maximal response. A

face selectivity index was then computed as the ratio between difference and

sum of face- and object-related responses. For |face-selectivity index| 4 1/3,

that is, if the response to faces was at least twice (or at most half) that of

nonface objects, a cell was classed as being face selective45–47.

Face decomposition analysis. Because the 128 images in this experiment did

not fall into distinct categories, the method for finding the response period

deviated slightly from the procedure described above. The poststimulus

response interval started when the firing rate exceeded a threshold equal to

spontaneous activity plus two s.d. of spontaneous activity. The response

interval ended when the response fell below this threshold value. The resulting

128-element response vector was subjected to a seven-way ANOVA with the

presence/absence of each of the seven face parts (Fig. 2a) as factors.

Cartoon data analysis. All data analysis was performed using custom programs

written in MATLAB (MathWorks).

Determining significance of tuning. For each cell and feature dimension, we

computed time-resolved poststimulus tuning profiles (Supplementary Fig. 2)

over three feature update cycles (351 ms of duration at 1-ms resolution) and 11

feature values. Profiles were subsequently smoothed with a two-dimensional

Gaussian kernel of width st ¼ 15 ms in time and sf ¼ 1 in the feature

domain. We searched each profile for feature tuning, that is, increased

diversity of response magnitudes, at each time delay. To minimize biases

for tuning shape, we computed an entropy-related measure termed hetereo-

geneity48. Heterogeneity is derived from the Shannon-Weaver diversity index

H0 ¼ �
Pk
i¼ 1

pi logðpiÞ, with k being the number of bins in the distribution

(11 in our case) and pi being the relative number of entries in each bin.

Homogeneity is defined as the ratio of H¢ and Hmax ¼ log(k); heterogeneity is

defined as 1 – homogeneity. Thus, if all pi values are identical, heterogeneity is

0, and if all values are zero except for one, heterogeneity is 1.

For each dimension and delay, we compared the heterogeneity value against

a distribution of 5,016 surrogate heterogeneity values obtained from shift

predictors. Shift predictors were generated by shifting the spike train relative to

the stimulus sequence in multiples of the stimulus duration. This procedure

preserved firing rate modulations by feature updates, but destroyed any
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systematic relationship between feature values and spiking. From the surrogate

heterogeneity distributions, we determined significance using Efron’s49,50

percentile method; for an actual heterogeneity value to be considered signifi-

cant, we required it to exceed 99.9% (5,011) of the surrogate values. Note that

this method is exact only for the actual 5,016 surrogate values and that a

different set of values may have generated a different threshold. Therefore, to

get a more robust and even more stringent significance level, we took as our

significance threshold the average of the fifth largest heterogeneity value and the

average of the five largest heterogeneity values. We validated this method with

simulations, larger surrogate datasets of selected cells and by estimating

significance levels from gamma functions fitted to the surrogate distributions

(Supplementary Fig. 9). In the vast majority of cases reported here, the

heterogeneity value of a significant tuning curve was much higher than even the

largest of the surrogates. For a dimension to be considered significantly tuned,

the significance threshold had to be passed at least twice at a temporal

separation of at least 2st. We further required the tuning curve’s maximal

value to be at least 25% larger than the minimal value (see Supplementary

Text 5 and Supplementary Figs. 10–12 for a different method, Gaussian fitting,

for finding significantly tuned dimensions).

Co-occurrence of significant tuning. We found 14 out of 19 feature dimen-

sions to be represented by middle face patch neurons. We then asked for each of

the C2
14 ¼ 91 feature combinations whether the frequency of occurrence was

larger than would be expected by a model of chance associations. This model

took into account the number of features each cell was tuned to (Fig. 3c) and

the number of cells tuned to each feature dimension (Fig. 3d). We generated

surrogate data that exactly matched these two distributions, but in which the

associations between cell and features was otherwise random. Generating a

distribution of 5,000 such surrogates for each feature combination, we tested

for significance at P ¼ 0.0055, a significance level at which only half a false

positive dimension is expected on average.

Joint tuning functions were computed for a temporal delay suitable for both

feature dimensions considered. For the analysis of interactions between signifi-

cantly tuned dimensions, we first computed the center of mass of the hetero-

geneity measures (functions of time) of all significantly modulated dimensions to

derive a ‘joint delay’. When the optimal delays of both tuning curves considered

were either shorter or longer than this joint delay, the center of mass between the

heterogeneity functions of these two dimensions was chosen instead (Supple-

mentary Text 4 contains additional analysis of joint tuning functions).

Normalization conventions. For each cell, responses were baseline subtracted

and divided by the maximal response above baseline; normalized responses

were then averaged across cells. All tuning curves were normalized to the same

area (Figs. 4, 6b and 7c, and Supplementary Fig. 8). The maximal response in

the whole population of tuning curves was then set to 1 and the minimum was

set to 0. In the inset in Figure 4d, deviating from this convention, the maximal

response of each of the seven average tuning curves was set to 1 and the

minimal response was set to 0.

46. Baylis, G.C., Rolls, E.T. & Leonard, C.M. Selectivity between faces in the responses of a
population of neurons in the cortex in the superior temporal sulcus of the monkey. Brain
Res. 342, 91–102 (1985).

47. Perrett, D.I. et al. Visual cells in the temporal cortex sensitive to face view and gaze
direction. Proc. R. Soc. Lond. B 223, 293–317 (1985).

48. Zar, J.H. Biostatistical Analysis (Prentice Hall, Upper Saddle River, New Jersey, 1998).
49. Efron, B. Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1–26

(1979).
50. Manly, B.F.J. Randomization, Bootstrap and Monte Carlo Methods in Biology (CRC

Press, Boca Raton, Florida, 2007).
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